1. a. Étudier la limite de f en 0.

$$\begin{cases} \lim_{x\to 0^+} 1 + \ln x = -\infty \\ \lim_{x\to 0^+} x^2 = 0^+ \end{cases}$$
 donc par quotient de limites, on a $\lim_{x\to 0^+} f(x) = -\infty$

b. Par croissances comparées, on sait que $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$

On a
$$f(x) = \frac{1}{x^2} + \frac{1}{x} \times \frac{\ln x}{x}$$
 donc
$$\begin{cases} \lim_{x \to +\infty} \frac{1}{x^2} = 0 \\ \lim_{x \to +\infty} \frac{1}{x} = 0 \\ \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \end{cases}$$
 donc, par somme et produit de limites, $\lim_{x \to +\infty} f(x) = 0$

c. L'axe des ordonnées est une asymptote verticale à la courbe $\mathcal C$ et l'axe des abscisses est une asymptote horizontale à la courbe $\mathcal C$ en $+\infty$

2. a.
$$f'(x) = \frac{\frac{1}{x} \times x^2 - 2x(1 + \ln(x))}{(x^2)^2} = \frac{x - 2x - 2x \ln x}{x^4} = \frac{-x - 2x \ln x}{x^4} = \frac{x(-1 + -2 \ln x)}{x^4} = \frac{-1 - 2 \ln(x)}{x^3}$$
 CQFD

b & c.
$$-1 - 2\ln(x) > 0 \iff \ln x < -\frac{1}{2} \iff x < e^{-\frac{1}{2}} \quad \text{avec } f\left(e^{-\frac{1}{2}}\right) = \frac{1 + \ln\left(e^{-\frac{1}{2}}\right)}{\left(e^{-\frac{1}{2}}\right)^2} = \frac{1 - \frac{1}{2}}{e^{-1}} = \frac{e}{2}$$

x	0		$e^{-\frac{1}{2}}$		+∞
$-1-2\ln(x)$		+	0	_	
x^3	0	+		+	
f'(x)		+	0	_	
f(x)	-8	7	$\frac{e}{2}$	Ŋ	0

3. a. On recherche le nombre de solutions de l'équation $f(x) = 0 \Leftrightarrow \frac{1 + \ln(x)}{x^2} = 0 \Leftrightarrow 1 + \ln x = 0 \Leftrightarrow \ln x = -1 \Leftrightarrow x = e^{-1}$

Le seul point d'intersection de \mathcal{C} avec l'axe des abscisses est le **point de coordonnées** $P\left(\frac{1}{e};\mathbf{0}\right)$

Et oui !!! ce n'était pas du Tvi !!!

b.

x	0		$\frac{1}{e}$		+∞
f(x)	Ш	_	0	+	

Ne pas oublier de vérifier tous les résultats avec la la courbe !!!

Partie A - 1.
$$\begin{cases} \lim_{x \to +\infty} -x = -\infty \\ \lim_{x \to +\infty} e^{x} = 0 \end{cases}$$
 et, par composées de limites, on a $\lim_{x \to +\infty} e^{-x} = 0$

donc, par somme, $\lim_{x\to +\infty} 1+e^{-x}=1$ et par inverse de limites $\lim_{x\to +\infty} f_1(x)=1$

La droite d'équation y=1 est asymptote à la courbe \mathcal{C}_1 en $+\infty$

De même, par composées de limites, on a $\lim_{x\to -\infty} e^{-x} = \lim_{y\to +\infty} e^{y} = +\infty$

donc, par somme, $\lim_{x\to -\infty}1+e^{-x}=+\infty$ et par inverse de limites $\lim_{x\to -\infty}f_1(x)=0$

La droite d'équation y=0, c'est-à-dire l'axe des abscisses, est **asymptote à la courbe \mathcal{C}_1 en** $-\infty$

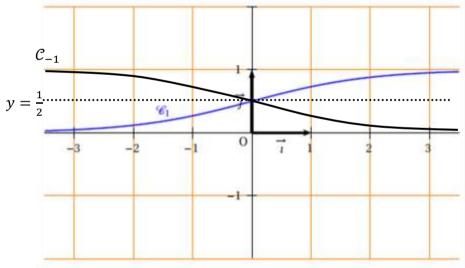
2.
$$f_1(x) = \frac{e^x}{e^x} \times \frac{1}{1+e^{-x}} = \frac{e^x}{e^x + e^{x-x}} = \frac{e^x}{e^x + 1}$$
 CQFD

3.
$$f'_1(x) = \frac{e^x(e^x+1)-e^x \times e^x}{(e^x+1)^2} = \frac{e^x}{(e^x+1)^2}$$

La fonction exponentielle, comme les carrés, sont positifs, donc la dérivée f_1' est strictement positive pour tout $x \in \mathbb{R}$. Par conséquent, la fonction f_1 est strictement croissante sur \mathbb{R} .

Partie B - 1.
$$f_1(x) + f_{-1}(x) = \frac{1}{1 + e^{-x}} + \frac{1}{1 + e^x} = \frac{e^x}{e^x + 1} + \frac{1}{1 + e^x} = \frac{e^x + 1}{1 + e^x} = 1$$
 CQFD

- **2.** Le point K a pour abscisse x et pour ordonnée $y_K = \frac{f_1(x) + f_{-1}(x)}{2} = \frac{1}{2}$ Il appartient donc bien à la droite d'équation $y = \frac{1}{2}$
- **3.** On trace la courbe \mathcal{C}_{-1} par symétrie axiale de la courbe \mathcal{C}_1 par rapport à la droite d'équation $y=\frac{1}{2}$



Partie C

1. VRAI Pour toutes valeurs de k on a $e^{-kx} > 0 \Rightarrow 1 + e^{-kx} > 1$ donc, par passage à l'inverse $0 < \frac{1}{1 + e^{-kx}} < 1$

Donc $0 < f_k(x) < 1$: la représentation graphique de la fonction f_k est strictement comprise entre les droites d'équation y = 0 et y = 1

- **2. FAUX** $f'_k(x) = \frac{-(-ke^{-kx})}{(1+e^{-kx})^2} = \frac{ke^{-kx}}{(1+e^{-kx})^2}$ Le signe de f'_k dépend du signe de k: si k > 0, la dérivée est strictement positive et donc la fonction est strictement croissante, mais si k < 0, la dérivée est strictement négative et donc la fonction est strictement décroissante
- 3. VRAI Pour tout réel $k \geq 10$, on a $-kx \leq -10x$ donc en particulier $-k \times \frac{1}{2} \leq -5$ $\Leftrightarrow e^{-\frac{k}{2}} \leq e^{-5} \Leftrightarrow 1 + e^{-\frac{k}{2}} \leq 1 + e^{-5} \Leftrightarrow \frac{1}{1 + e^{-\frac{k}{2}}} \geq \frac{1}{1 + e^{-5}} \Leftrightarrow f_k\left(\frac{1}{2}\right) \geq \frac{1}{1 + e^{-5}}$ Or $\frac{1}{1 + e^{-5}} \simeq 0.9933$ donc on a bien $f_k\left(\frac{1}{2}\right) \geq 0.99$

Partie A

1.
$$\begin{cases} \lim_{x \to +\infty} x + 1 = +\infty \\ \lim_{x \to +\infty} e^x = +\infty \end{cases}$$
 et, par produit de limites, on a $\lim_{x \to +\infty} f(x) = +\infty$

Par ailleurs $f(x) = xe^x + e^x$.

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to -\infty} e^x = 0}} xe^x = 0 \quad \text{(croissances comparées)}$$
 et, par somme de limites, on a $\lim_{x \to -\infty} f(x) = 0$

2.
$$f'(x) = 1e^x + (x+1)e^x = (1+x+1)e^x = (x+2)e^x$$
 CQFD

3.					
X	-∞		-2		+∞
x + 2		_	0	+	
e^x		+		+	
f'(x)		_	0	+	
f(x)	0	Ŋ	$-e^{-2}$	7	+∞

Partie B

1. a.
$$g_m(x) = 0 \Leftrightarrow x + 1 - me^{-x} = 0 \Leftrightarrow x + 1 = me^{-x} \Leftrightarrow (x + 1)e^x = m \Leftrightarrow f(x) = m$$
 CQFD

b. D'après la question précédente, chercher le nombre points d'intersection de la courbe C_m avec l'axe des abscisses revient à chercher le nombre de solutions de l'équation $g_m(x) = 0$, c'est-à-dire de f(x) = m

D'après le tableau de variation de f (en application du Tvi) :

Si $m < -e^{-2}$ il n'y a **aucun** point d'intersection

Si $m = -e^{-2}$ il y a **un seul** point d'intersection

Si $-e^{-2} < m < 0$ il y a **deux** points d'intersections

Si $m \ge 0$ il y a **un seul** point d'intersection

2. La courbe **1** n'ayant aucun point d'intersection avec (Ox), cela indique d'après la question précédente que $m < -e^{-2}$: il s'agit donc de la courbe \mathcal{C}_{-e}

La courbe \mathcal{C}_0 correspond à la fonction $g_0(x)=x+1$ et est donc une droite : il s'agit de la courbe 2 La courbe 3 correspond donc à \mathcal{C}_e (pour $m\geq 0$, il n'y a bien qu'un seul point d'intersection)

3.
$$g_m(x) - y = x + 1 - me^{-x} - (x + 1) = -me^{-x}$$

L'exponentielle étant toujours positive, $g_m(x) - y$ est du signe de -m.

Si m>0, $g_m(x)-y<0$ et la courbe \mathcal{C}_m est en dessous de la droite \mathcal{D}

Si m < 0, $g_m(x) - y > 0$ et la courbe C_m est au dessus de la droite \mathcal{D}

4.
$$\begin{cases} \lim_{a\to+\infty}1-a=-\infty\\ \lim_{Y\to-\infty}-2e^Y=0 \end{cases} \text{ par composées de limites, on a } \lim_{a\to+\infty}-2e^{1-a}=0$$

donc, par somme : $\lim_{a \to +\infty} \mathcal{A}(a) = 2e$

Partie A

1. Dans les 3 cas, le tableau de variation de f est (où $\alpha \simeq -0.6$):

х	-3		α		4
f(x)		K		7	

Quand aux tableaux de signes des fonctions correspondant aux courbes \mathcal{C}_2 :

_	٠.						-
`	ıt	,,	α	tı	io	n	7

x	-3		α		4
Dérivée ?		_	0	+	

Situation 2

x	-3		-1		4
Dérivée ?		_	0	+	

Situation 3

Situations						
x	-3	4				
Dérivée ?	-	F				

Seule la situation 1 correspond

2. On a pour équation de $\Delta: y = f'(0)(x-0) + f(0)$ or, d'après les coordonnées des points A et B, on a f(0) = 2 et f'(0) = 1Donc: $y = 1x + 2 \Leftrightarrow y = x + 2$

3. a. $f(0) = 2 \Leftrightarrow e^{-0} + a \times 0 + b = 2 \Leftrightarrow 1 + b = 2 \Leftrightarrow b = 1$ donc $f(x) = e^{-x} + ax + 1$ **b.** $f'(x) = -e^{-x} + a$ et $f'(0) = 1 \Leftrightarrow -e^0 + a = 1 \Leftrightarrow -1 + a = 1 \Leftrightarrow a = 2$ On a donc $f(x) = e^{-x} + 2x + 1$

4. On a $f'(x) = -e^{-x} + 2$ et $2 - e^{-x} \ge 0 \iff e^{-x} \le 2 \iff -x \le \ln 2 \iff x \ge -\ln 2$ Avec $f(-\ln x) = e^{\ln 2} + 2(-\ln 2) + 1 = 3 - 2\ln 2$

	х	-∞		- ln 2		+∞
f	f'(x)		_	0	+	
j	f(x)		7	3 – 2 ln 2	7	

 $\lim_{x \to +\infty} -x = -\infty$ et, par composée de limites, on a $\lim_{x\to +\infty}e^{-x}=0$. Donc, par somme $\lim_{x\to +\infty}f(x)=+\infty$ $\lim e^Y = 0$

1.
$$f'(x) = e^{2x} + (x - 1)(2e^{2x}) - 1 = (1 + 2x - 2)e^{2x} - 1 = (2x - 1)e^{2x} - 1$$

On a alors $f'(0) = (0-1)e^0 - 1 = -1 - 1 = -2$

$$\operatorname{et} \begin{cases} \lim_{x \to +\infty} 2x - 1 = +\infty \\ \lim_{x \to +\infty} e^{2x} = +\infty \text{ (composée de limites)} \end{cases} \quad \operatorname{et, par produit et somme de limites, on a } \lim_{x \to +\infty} f'(x) = +\infty$$

2.
$$f''(x) = 2e^{2x} + (2x - 1)(2e^{2x}) = (2 + 4x - 2)e^{2x} = 4xe^{2x}$$

3.

х	-∞		0		+∞
4 <i>x</i>		_	0	+	
e^{2x}		+		+	
f''(x)		_	0	+	
f'(x)		Ŋ	-2	7	+∞

Sur $[0; +\infty[$, la fonction f' est continue et strictement croissante, avec f'(0) < 0 et $\lim_{x \to +\infty} f'(x) > 0$. D'après le théorème des valeurs intermédiaires, l'équation f'(x) = 0 n'a qu'une seule solution sur $[0; +\infty[$

4. a. On a $f(0) = (-1)e^0 - 1 = -2$ et, d'après la question précédente, on a :

x	0		x_0		+∞
f'(x)		_	0	+	
f(x)	-2	Ā		7	+∞

Sur $[0; x_0]$, la fonction f est strictement décroissante, donc $f(x) \le f(0) \Leftrightarrow f(x) \le -2$ f est bien négative sur $[0; x_0]$

b.
$$f(2) = (2 - 1)e^4 - 1 - 2 = e^4 - 3 > 0$$

Sur $[x_0; +\infty[$, la fonction f est continue et strictement croissante, avec $f(x_0) < 0$ et f(2) > 0.

D'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 n'a qu'une seule solution sur $[x_0; +\infty[$ Comme f est strictement négative sur $[0; x_0]$ l'équation f(x) = 0 n'y a pas de solution.

Donc la fonction f s'annule bien que pour une unique valeur sur $[0;+\infty[$

À la calculatrice, on trouve $a \simeq 1,20$