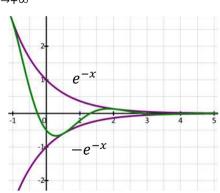
Corrections Savoir Fl. 4

Corrigé Exercice 16

- a. $\Rightarrow \lim_{\substack{x \to 0 \ x < 0}} \frac{1}{x} = -\infty$ donc pour $\lim_{\substack{x \to 0 \ x < 0}} f(x)$ on ne peut pas conclure
 - $\Rightarrow \lim_{\substack{x\to 0\\x>0}}\frac{1}{x}=+\infty \text{ et } \frac{1}{x}\leq f(x) \text{ donc, d'après le théorème de comparaison } \lim_{\substack{x\to 0\\x>0}}f(x)=+\infty$
- **b.** $\Rightarrow \lim_{x \to 0^-} \frac{1}{x} = -\infty$ et $f(x) \le \frac{1}{x}$ donc, d'après le théorème de comparaison $\lim_{x \to 0^-} f(x) = -\infty$ $\Rightarrow \lim_{x \to 0^+} \frac{1}{x} = +\infty$ donc pour $\lim_{x \to 0^+} f(x)$ on ne peut pas conclure
- c. $\Rightarrow \lim_{\substack{x \to 1 \\ x < 1}} \frac{1}{x} + x = 2$ et $\lim_{\substack{x \to 1 \\ x < 1}} x + 1 = 2$ donc, d'après le théorème des gendarmes, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = 2$ $\Rightarrow \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x} + x = +\infty$ et $\frac{1}{x} + x \le f(x)$ donc, d'après le théorème de comparaison $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty$
- **d.** $\Rightarrow \lim_{x \to 0^+} -\frac{1}{x} = -\infty$ et $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ donc pour $\lim_{x \to 0^+} f(x)$ on ne peut pas conclure $\Rightarrow \lim_{x \to +\infty} -\frac{1}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc, d'après le théorème des gendarmes $\lim_{x \to +\infty} f(x) = 0$
- e. $|f(x) 1| \le x \Leftrightarrow -x \le f(x) 1 \le x \Leftrightarrow -x + 1 \le f(x) \le x + 1$
 - $\Rightarrow \lim_{x\to 0^+} -x+1=1$ et $\lim_{x\to 0^+} x+1=1$ donc, d'après le théorème des gendarmes $\lim_{x\to 0^+} f(x)=1$
 - $\Rightarrow \lim_{x \to 1^-} -x + 1 = 0$ et $\lim_{x \to 1^-} x + 1 = 2$ donc, pour $\lim_{x \to 1^-} f(x)$ on ne peut pas conclure

Corrigé Exercice 17

- 1) a. On a $-1 \le \sin x \le 1 \Leftrightarrow x-1 \le x+\sin x \le x+1$ on a bien $x-1 \le f(x) \le x+1$
- **b.** La courbe de f est bornée par les droites d'équation y = x 1 et y = x + 1
- 2) a. on a $-1 \le \cos\left(2x + \frac{\pi}{3}\right) \le 1$ comme l'exponentielle est toujours positive, on a aussi $-e^{-x} < e^{-x}\cos\left(2x + \frac{\pi}{3}\right) \le e^{-x}$ donc $-e^{-x} \le g(x) \le e^{-x}$ La courbe de g est bornée par les courbes d'équation $y = -e^{-x}$ et $y = e^{-x}$
- **b.** On a $\lim_{x\to +\infty} -e^{-x} = \lim_{x\to +\infty} e^{-x} = 0$ donc, d'après le théorème des gendarmes : $\lim_{x\to +\infty} g(x) = 0$



3) $\lim_{x\to 0^+} \ln x + 1 = -\infty$ or $h(x) \le \ln x + 1$ donc, d'après le théorème de comparaison, $\lim_{x\to 0^+} h(x) = -\infty$ $\lim_{x\to +\infty} \ln x - 1 = +\infty$ or $h(x) \ge \ln x - 1$ donc, d'après le théorème de comparaison, $\lim_{x\to +\infty} h(x) = +\infty$

4)La limite d'un polynôme est celle de son terme de plus haut degré $\lim_{x \to +\infty} \frac{x+2}{x} = \lim_{x \to +\infty} \frac{x}{x} = 1 \quad \text{et } \lim_{Y \to 1} \ln Y = 0 \quad \text{donc par composition de limites } \lim_{x \to +\infty} \ln \left(\frac{x+2}{x}\right) = \mathbf{0}$

5) on a
$$-1 \le \cos x \le 1$$
 et, pour $x < 0$, on a alors $-x \ge x \cos x \ge x$ et $x^2 + 1 > 0$ donc $\frac{x}{x^2 + 1} \le \frac{x \cos x}{x^2 + 1} \le -\frac{x}{x^2 + 1}$ Or $\lim_{x \to -\infty} \frac{x}{x^2 + 1} = \lim_{x \to -\infty} \frac{x}{x^2} = 0$ et $\lim_{x \to -\infty} -\frac{x}{x^2 + 1} = 0$ donc, d'après el théorème des gendarmes, $\lim_{x \to -\infty} \frac{x \cos x}{x^2 + 1} = 0$

On a $-1 \le \sin x \le 1$ et, pour x > 0, on a alors $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x} \Leftrightarrow 1 - \frac{1}{x} \le \frac{\sin x}{x} + 1 \le 1 + \frac{1}{x}$ On a $\lim_{x \to +\infty} 1 - \frac{1}{x} = \lim_{x \to +\infty} 1 + \frac{1}{x} = 1$ donc, d'après le théorème des gendarmes $\lim_{x \to +\infty} \frac{\sin x}{x} + 1 = 1$

6) Pour $-\infty$, on peut conclure, car $\lim_{x\to -\infty}\frac{x^2}{6}=+\infty$ et comme pour x<0, on a $f(x)\geq \frac{x^2}{6}$, d'après le théorème de comparaison, on a $\lim_{x\to -\infty}f(x)=+\infty$ Par contre, pour $+\infty$, on ne peut rien dire, car **l'inégalité n'est pas vérifiée pour** x>0 !!!