Savoir FL. 4: Théorèmes de limites

Applications directes

- 1) Pour $x \ge 2$, on a $f(x) \ge x 1$. Peut-on conclure sur $\lim_{x \to +\infty} f(x)$? Justifier.
- **3)** Pour $x \in \mathbb{R}$, on a $0 \le h(x) \le 2e^{-x}$. Peut-on conclure sur $\lim_{x \to +\infty} h(x)$? Justifier.
- **5)** Pour $x \in]1; +\infty[$, on a $T(x) \ge e^{2x-1}$. Peut-on conclure sur $\lim_{x \to +\infty} T(x)$? Justifier.
- 2) Pour x < 0, on a $g(x) \ge x^3 2x$ Peut-on conclure sur $\lim_{x \to -\infty} g(x)$? Justifier.
- **4)** Pour x>0, on a $\ln t \le f(t) \le 2 \ln t$. Peut-on conclure sur $\lim_{t\to 0^+} f(t)$ et sur $\lim_{t\to +\infty} f(t)$?
- **6)** Pour $x \in]-\infty$; -1[, on a $1-\frac{1}{x} \le k(x) \le 1+\frac{1}{x}$. Peut-on conclure sur $\lim_{x\to -\infty} k(x)$?

Extrait bac

Un publicitaire souhaite imprimer le logo ci-contre sur un T-shirt. Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = e^{-x}(-\cos x + \sin x + 1)$$
 et $g(x) = -e^{-x}\cos x$.

- **1.** Justifier que, pour tout $x \in \mathbb{R}$: $-e^{-x} \le f(x) \le 3e^{-x}$
- **2.** En déduire la limite de f en $+\infty$.

Corrections Savoir FL. 4

Corrigé Entraînement

- 1) $\lim_{x\to +\infty} x-1=+\infty$ et $f(x)\geq x-1$, donc, d'après les théorème de comparaison, on a $\lim_{x\to +\infty} f(x)=+\infty$
- 2) Un polynôme a les mêmes limites que son terme de plus haut degré, donc $\lim_{x \to -\infty} x^3 2x = \lim_{x \to -\infty} x^3 = -\infty$ On ne peut rien conclure
- **3)** Par composée de limites, on a $\lim_{x\to +\infty} 2e^{-x} = \lim_{Y\to -\infty} 2e^Y = 0$ et $0 \le h(x) \le 2e^{-x}$ D'après le théorème des **gendarmes**, $\lim_{x\to +\infty} h(x) = 0$
- 4) $\lim_{t\to 0^+} 2\ln t = -\infty$ et on a $f(t) \le 2\ln t$ donc d'après les théorème de **comparaison**, on a $\lim_{t\to 0^+} f(t) = -\infty$ $\lim_{t\to +\infty} \ln t = +\infty$ et on a $f(t) \ge \ln t$ donc d'après les théorème de **comparaison**, on a $\lim_{t\to +\infty} f(t) = +\infty$
- 5) $\begin{cases} \lim_{x \to +\infty} 2x 1 = +\infty \\ \lim_{x \to +\infty} e^{Y} = +\infty \end{cases}$ donc, par composées de limites, on a $\lim_{x \to +\infty} e^{2x-1} = +\infty$.

Comme de plus $T(x) \ge e^{2x-1}$, d'après les théorème de **comparaison**, on a $\lim_{x \to +\infty} T(x) = +\infty$

6) $\begin{cases} \lim_{x \to -\infty} 1 - \frac{1}{x} = 1 \\ \lim_{x \to -\infty} 1 + \frac{1}{x} = 1 \end{cases}$ et $1 - \frac{1}{x} \le k(x) \le 1 + \frac{1}{x}$ donc, d'après le théorème des **gendarmes**, $\lim_{x \to -\infty} k(x) = 1$

Corrigé Extrait bac

1. On a, pour tout $x \in \mathbb{R}$, $-1 \le -\cos x \le 1$ et $-1 \le \sin x \le 1$ donc, par addition, $-2 \le -\cos x + \sin x \le 2$

Et donc $-1 \le -\cos x + \sin x + 1 \le 3$

Comme de plus $e^{-x} > 0$, on en déduit bien que $-e^{-x} \le e^{-x}(-\cos x + \sin x + 1) \le 3e^{-x}$ Soit $-e^{-x} \le f(x) \le 3e^{-x}$.

2. On a, par composée de limites : $\lim_{x\to +\infty} (-e^{-x}) = \lim_{y\to -\infty} (-e^y) = 0$ et $\lim_{x\to +\infty} (3e^{-x}) = 3\times 0 = 0$

Comme $-e^{-x} \le f(x) \le 3e^{-x}$, on peut appliquer le théorème des gendarmes et $\lim_{x \to +\infty} f(x) = 0$