(1^{ère} partie)

Savoir Nc. 1 : Calcul dans Ê

Exercice 1: Les calculs de bases

Effectuer les calculs suivants, en simplifiant au maximum le résultat obtenu.

a)
$$z = 2(3+2i) + (1-4i)$$

a)
$$z = 2(3+2i) + (1-4i)$$
 b) $z = (\sqrt{3}+i) - (-\sqrt{3}-i)$ c) $z = i(3+2i)$

c)
$$z = i(3 + 2i)$$

d)
$$z = -2i(1-3i)$$

e)
$$z = (1+2i)(3-i)$$

d)
$$z = -2i(1-3i)$$
 e) $z = (1+2i)(3-i)$ f) $z = (2+i)\left(-\frac{1}{2}+2i\right)$ g) $z = (2-i)(4+i)(i-1)$ h) $z = (3+2i)^2$ j) $z = (2+5i)(2-5i)$

g)
$$z = (2-i)(4+i)(i-1)$$

h)
$$z = (3 + 2i)^2$$

j)
$$z = (2+5i)(2-5i)$$

En bonus : $z = (1 - i)^3$

Exercice 2 : Identifier parties réelle et imaginaire

Pour chacun des nombres complexes suivants, déterminer Re(z) et Im(z), et préciser quand s'agit d'un nombre réel ou d'un imaginaire pur.

a)
$$z = 2 + i$$

b)
$$z = 5i - 3$$

c)
$$z = \frac{i}{2}$$

b)
$$z = 5i - 3$$
 c) $z = \frac{i}{2}$ **d)** $z = 4 - \sqrt{3}$

e)
$$z = \frac{4-3i}{2}$$

f)
$$z = 1 + 3i - i$$

g)
$$z = 2i^2 + i + 2$$

f)
$$z = 1 + 3i - i$$
 g) $z = 2i^2 + i + 2$ h) $z = i^3 - 1 + i$

i)
$$z = \frac{4}{3} - i \frac{\sqrt{3} - 1}{2}$$

j)
$$z = a - 2 + i(1 - b)$$
 k) $z = 3t - i(t - 2)$

k)
$$z = 3t - i(t - 2)$$

Exercice 3 : Réfléchir sur les parties réelle et imaginaire

- **1) a.** On donne $z_1 = 3 a + (2 3a)i$. Déterminer pour quelle(s) valeurs de a le complexe z_1 est un réel.
 - **b.** On donne $z_z = \frac{a+1}{2} \frac{3+a}{2}i$. Déterminer pour quelle(s) valeurs de a le nombre z_2 est un imaginaire pur.
 - **c.** $z_3 = 4 5ai a^2$. Déterminer a tel que $z_3 \in i\mathbb{R}$
- 2) a. On donne $z_5 = \frac{2a}{3} 5i$. Déterminer a pour que $z_5 = 4 + (-5)i$
 - **b.** On donne $z_6=2a-1-(4+b)i$. Déterminer a et b pour que $z_6=\frac{3-4i}{2}$
 - **c.** Déterminer les réels x et y tels que : x + 2i = 3 + i(5 y)

Exercice 4: Calcul niveau +

- 1) On donne la fonction f définie sur $\mathbb C$ par f(z)=2-iz Calculer f(3i); f(-1); f(1+i) et calculer la forme algébrique de l'image de $z_1=2+3i$
- **2)** On donne deux nombres complexes $z_1 = 2a 3i$ et $z_2 = 1 2ai$ Donner, en fonction de a les parties réelle et imaginaire du nombre $\mathcal{Z} = 2z_1 - iz_2$
- **3) a.** Calculer i^2 ; i^3 ; i^4 ; i^5 ; i^{12} ; i^{13} ; i^{14}
 - **b.** Déterminer i^n selon les valeurs de n, entier naturel non nul (différentier les cas de figure)
 - **c.** En déduire la valeur de i^{2713}
- 4) Forcer la factorisation par i des nombres complexes suivants (attention aux signes)
 - a) z = 3 2i
- **b)** z = 4 + i
- c) z = -2
- **5)** « Pout tout entier naturel $n \ge 1$, on a $(1+i)^{4n} = (-4)^n$ »... Vrai ou faux ? Justifier

Exercice 5 : Et pourquoi pas des suites ?

Soit (u_n) une suite à valeurs complexes définie par $u_0=1$ et pour tout entier $n:u_{n+1}=(1+i)u_n$

- **1)** Calculer u_1 et u_2
- 2) a. Par analogie avec les suites réelles, comment pourrait-on qualifier la suite (u_n) ?
 - **b.** Proposer une expression de u_n en fonction de n.
 - **c.** Déterminer u_5 .