Savoirs Si. 3: Théorèmes de comparaison

Exercice 7: Application directe des théorèmes de comparaison

1) En utilisant quand c'est possible le théorème de comparaison des limites infinies, déterminer les limites des suites (u_n) telles que, pour tout n:

≥ :	$3n^2$
	≥ :

b)
$$u_n \le -2\sqrt{n}$$

c)
$$u_n \le e^n$$

d)
$$u_n \le 1 - n$$

e)
$$u_n \le n^2(1-n)$$

$$f) \quad u_n \ge n + \left(\frac{1}{2}\right)^n$$

g)
$$u_n \ge 2 - n$$

h)
$$u_n \ge 5^n$$

2) En utilisant, quand c'est possible, le théorème des gendarmes, déterminer les limites des suites (u_n) telles que, pour tout n:

a)
$$1 - \frac{1}{n} \le u_n \le 1 + \frac{1}{n}$$

b)
$$\left(\frac{1}{2}\right)^n \le u_n \le \left(\frac{2}{3}\right)^n$$

c)
$$1 - \frac{2}{3} \times \left(\frac{1}{2}\right)^n \le u_n \le 2 + \left(\frac{1}{2}\right)^n$$

d)
$$4 - \frac{n}{n^2 + 1} \le u_n \le 4 + \frac{1}{n + 1}$$

$$e) e^{-n} \le u_n \le e^n$$

f)
$$\frac{1}{n^2} \le u_n \le \frac{4}{n^2}$$

3) Choisir le bon théorème pour déterminer la limites des suites (u_n) telles que, pour tout n:

a)
$$n-1 \le u_n \le n+1$$

b)
$$2 - \frac{1}{2^n} \le u_n \le 2 + \frac{1}{2^n}$$

c)
$$2 - n \le u_n \le 2 - n^2$$

d)
$$5 \le u_n \le 5 + \frac{5}{n}$$

e)
$$\frac{2n}{n^2+1} \le u_n \le \frac{2n+1}{n^2+1}$$

$$f) \quad \ln n \le u_n \le \ln(2n)$$

Exercice 8: Comparaison et limites infinies

Attention : ne partez pas trop vite sur une démonstration par récurrence : beaucoup des inégalités et encadrements demandés peuvent s'obtenir avec les méthodes « classique »

1)
$$u_n = \sqrt{n^2 + 1}$$
.

Montrer que $u_n \ge n$ pour tout entier naturel n puis en déduire la limite de u_n .

2)
$$v_n = -3n^2 + (-1)^n$$
.

Montrer que $v_n \leq -3n^2 + 1$ pour tout entier naturel n puis en déduire la limite de v_n .

3)
$$w_n = n + \frac{\cos n}{n}$$
. Minorer w_n puis conclure sur sa limite éventuelle.

4) Comparer
$$a_n = -n^3 - \frac{\sqrt{n}}{n^2 + 1}$$
 et $b_n = -n^3$, puis en déduire la limite de (a_n) .

5) On considère la suite définie par
$$u_0=1$$
 et $u_{n+1}=u_n+2n+1$. Démontrer par récurrence que, pour $n\geq 0$, on a $u_n\geq n^2$ et en déduire la limite de u_n .

Exercice 9: Théorème des gendarmes

1) On donne
$$u_n=\frac{3+(-1)^n}{n}$$
. Justifier que, pour tout entier naturel non nul n , on a $\frac{2}{n} \leq u_n \leq \frac{4}{n}$. En déduire $\lim_{n \to +\infty} u_n$.

2) Encadrer la suite
$$v_n = \frac{n + \cos(n)}{n}$$
 et en déduire sa limite.

3) (w_n) est définie par $w_n = \left(\frac{1}{1+n}\right)^n$. Montrer que, pour tout entier $n \ge 1$, on a $0 \le w_n \le \frac{1}{2^n}$ et en déduire la limite de la suite (w_n) .

- **4)** On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{e^{u_n}}{n+2}$
 - a) Montrer par récurrence que, pour tout $n \geq 1$, $0 < u_n \leq 1$.
 - **b)** En déduire que, pour $n \in \mathbb{N}$, $u_{n+1} \leq \frac{3}{n+2}$.
 - c) Montrer que la suite (u_n) converge.

5) On pose
$$S_n = \sum_{k=1}^n \frac{n}{n^2+k} = \frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}$$
.

- a) De combien de termes se compose S_n ? Quelle est la limite de chacun de ces termes quand n tend vers $+\infty$? Que pensez-vous de $\lim_{n\to+\infty} S_n$?
- **b)** Quel est le plus petit des termes ? Quel est le plus grand ? En déduire que, pour tout entier $n \ge 1$, on a $\frac{n^2}{n^2+n} \le S_n \le \frac{n^2}{n^2+1}$ et en déduire la limite de S_n . Était-ce le résultat attendu ?

Variables:

Initialisation:

Traitement:

Sortie:

n et k sont des entiers naturels

D prend la valeur $\frac{D}{2}$ + 100

A prend la valeur $\frac{A}{2} + \frac{D}{2} + 70$

D et A sont des réels

D prend la valeur 300

A prend la valeur 450

Pour k variant de 1 à n

Saisir la valeur de n

Fin pour

Afficher D

Afficher A

Exercice 10: Nelle Calédonie - Nov 2015

On considère deux suites de nombres réels (d_n) et (a_n) définies par $d_0=300,\ a_0=450$.

et, pour tout entier naturel $n \geq 0$ $\begin{cases} d_{n+1} = \frac{1}{2}d_n + 100 \\ a_{n+1} = \frac{1}{2}d_n + \frac{1}{2}a_n + 70 \end{cases}$

- **1.** Calculer d_1 et a_1 .
- **2.** On souhaite écrire un algorithme qui permet d'afficher en sortie les valeurs de d_n et a_n pour une valeur entière de n saisie par l'utilisateur. L'algorithme suivant est proposé :
 - **a.** Quels nombres obtient-on en sortie de l'algorithme pour n=1? Ces résultats sont-ils cohérents avec ceux obtenus à la question 1. ?
 - **b.** Expliquer comment corriger cet algorithme pour qu'il affiche les résultats souhaités.
- **3. a.** Pour tout entier naturel n, on pose $e_n=d_n-200$. Montrer que la suite (e_n) est géométrique.
 - **b.** En déduire l'expression de d_n en fonction de n.
 - **c.** La suite (d_n) est-elle convergente ? Justifier.
- **4.** On admet que pour tout entier naturel n,

$$a_n = 100n \left(\frac{1}{2}\right)^n + 110 \left(\frac{1}{2}\right)^n + 340$$

- **a.** Montrer que pour tout entier n supérieur ou égal à 3, on a $2n^2 \ge (n+1)^2$.
- **b.** Montrer par récurrence que pour tout entier n supérieur ou égal à 4, $2^n \ge n^2$.
- **c.** En déduire que pour tout entier n supérieur ou égal à 4, $0 \le 100n \left(\frac{1}{2}\right)^n \le \frac{100}{n}$.
- **d.** Étudier la convergence de la suite (a_n) .