Corrigés Savoirs Fc. 3

Corrigé Exercice 7

1) a) f est continue et strictement décroissante sur [2 ; 13] avec f(2) > 0 et f(13) < 0. D'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 possède donc une seule solution a sur [2; 13].

x	2	а	13
f (x)	8	A	-2
Signe de f	+	0	-

b) On a alors:

2) Sur [4; 6] la fonction g' est strictement négative.

Pas de solution sur cet intervalle.

g' est continue et strictement décroissante sur [-2; 4] avec $0 \in [g'(4); g'(-2)]$. D'après le TVI, l'équation g'(x) = 0admet une unique solution $\alpha \in [-2; 4]$. On a :

x	-2		α		6
g'(x)		+	0	_	
g(x)	1 – 6 <i>e</i>	7	$g(\alpha)$	7	$1 + 18e^{-3}$

3) a)
$$f'(x) = \frac{1}{2} \times 2x - \frac{2x}{x^2 + 1} = x - \frac{2x}{x^2 + 1} = \frac{x^3 + x - 2x}{x^2 + 1}$$

 $f'(x) = \frac{x(x^2 - 1)}{x^2 + 1}$
b) La fonction f est continue sur $[0; 5]$.

Elle est strictement croissante sur [1; 5] avec f(1) < 0et f(5) > 0.

Donc d'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution α sur [1; 5].

Par ailleurs, on a f(0) = 0 donc 0 est la deuxième solution de l'équation sur [0; 5].

	1 -				
x	0		1		5
x	0	+	1	+	
$x^2 - 1$		-	0	+	
$x^2 + 1$		+		+	
$f^{'}(x)$	0	_	0	+	
f(x)	0	7	$\frac{1}{2}$ - ln 2	7	$\frac{25}{2} - \ln 26$

c)

х	0		α		5
f(x)	0	_	0	+	

À la calculatrice, on trouve $1,58 < \alpha < 1,59$

Un peu plus...

2) a)
$$g'(x) = 12x - 6x^2 = -6x(x - 2)$$

et $g(-1) = 6$; $g(0) = -2$ et $g(2) = 6$

g est continue sur \mathbb{R}

Sur [-1; 0], elle est strictement décroissante, avec g(-1) > 0 et g(0) < 0. Donc d'après le TVI, l'équation g(x) = 0 y admet une unique solution, **notée** α .

De même, sur [0; 2], g est strictement croissante, avec g(0) < 0 et g(2) > 0, l'équation g(x) = 0 y admet une unique solution, **notée \beta.**

Signe de g		+ 0 -		- 0 +	
g(x)	6	R	-2	8	6
g'(x)		_	0	+	0
x	-1	α	0	β	2

Corrigé Exercice 8

1) a.
$$f'(x) = 6x^2 - 12x = 6x(x-2)$$

Il s'agit d'un PSD de racines $x_1 = 0$ et $x_2 = 2$ et négatif à l'intérieur des racines, soit sur [0; 2].

Donc $f'(x) \le 0$ et f est bien strictement décroissante sur [0; 2].

b.
$$(E_1): 2x^3 + 5 = 6x^2 \Leftrightarrow 2x^3 - 6x^2 + 5 = 0 \Leftrightarrow f(x) = 0$$

Or, f est continue et strictement décroissante sur [0;2], et on a f(0)=5 et f(2)=-3 donc $0 \in [f(2);f(0)]$. D'après le TVi, l'équation f(x)=0 admet une **unique solution** x_0 **sur [0;2]**

c. à la calculatrice, par balayage, on trouve $\,x_0 \simeq 1$, 168

Un peu plus...

2) On cherche à résoudre l'équation (E_2) : $x^4 + 10 = 8x^2$ pour $x \in [0; 5]$.

a.
$$(E_2)$$
: $x^4 + 10 = 8x^2 \iff x^4 - 8x^2 + 10 = 0$

On définit sur [0; 15] la fonction $g(x) = x^4 - 8x^2 + 10$.

On a
$$g'(x) = 4x^3 - 16x = 4x(x^2 - 4)$$

g est continue sur [0;5]. Elle est strictement décroissante sur [0;2] avec $0 \in [g(2);g(0)]$: d'après le Tvi, l'équation g(x)=0 admet une unique solution α sur [0;2].

De même, g est strictement croissante sur [2;5] avec $0 \in [g(2);g(5)]$: l'équation g(x)=0 admet une unique solution β sur [2;5].

 (E_2) admet bien seulement deux solutions α et β sur [0;5]

b. On trouve $\alpha \simeq 1,25$ et $\beta \simeq 2,54$

g(x)	10	7	6	7	435
g'(x)	0	_	0	+	
$x^2 - 4$		_	0	+	
4 <i>x</i>	0	+		+	
X	0		2		5
Donc					

Corrigé Exercice 9

Corrigé Partie A - 1.

$$f'(x) = \frac{-3(-2e^{-2x})}{(1+e^{-2x})^2} = \frac{6e^{-2x}}{(1+e^{-2x})^2}$$

L'exponentielle est toujours strictement positive, ainsi que le dénominateur (carré d'un nombre déjà strictement positif).

Donc la dérivée f' est strictement positive sur $\mathbb R$ et la fonction $\mathbf f$ est strictement croissante sur $\mathbb R$

3. On calcule avec la calculatrice : f(0) = 1.5 < 2.999 et $f(5) \approx 2.99986 > 2.999$

Attention, selon les calculatrices, l'affichage dans les tableaux n'a que 3 décimales !!! Utiliser le curseur pour faire apparaître une valeur approchée plus précise

D'après la question 1, la fonction f est continue et strictement croissante sur \mathbb{R} . D'après le théorème des valeurs intermédiaires, l'équation f(x) = 2,999 admet une unique solution α , et on sait déjà qu'elle appartient à l'intervalle [0;5]

À l'aide de la calculatrice, on détermine l'encadrement : $4 \le \alpha \le 4,01$

Corrigé Partie B

1. On a
$$h(x) = 3 - f(x) = 3 - \frac{3}{1 + e^{-2x}} = 3\left(1 - \frac{1}{1 + e^{-2x}}\right) = 3\left(\frac{1 + e^{-2x} - 1}{1 + e^{-2x}}\right) = \frac{3e^{-2x}}{1 + e^{-2x}}$$

Une exponentielle est toujours strictement positive, donc $3e^{-2x} > 0$ et $1 + e^{-2x} > 1 > 0$ La fonction h est bien strictement positive sur \mathbb{R} .

On a donc $h(x) > 0 \Leftrightarrow 3 - f(x) > 0 \Leftrightarrow f(x) < 3$ pour tout x

Comme la droite Δ a pour équation y=3, on peut en déduire que **la courbe** ${\cal C}$ sera toujours en dessous de la droite Δ

Corrigé Exercice 10

Partie A - 2. a.
$$f'(x) = 1e^{1-x^2} + x(-2xe^{1-x^2}) = (1-2x^2)e^{1-x^2}$$
 CQFD

b.
$$1 - 2x^2 = 0 \iff x^2 = \frac{1}{2} \iff x = \frac{1}{\sqrt{2}} \quad ou \quad x = \frac{-1}{\sqrt{2}}$$

Et
$$f\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{1-\frac{1}{2}} = \frac{1}{\sqrt{2}}e^{\frac{2}{2}}$$

x	-∞	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$		+∞
$1 - 2x^2$	_	0	+	0	-	
e^{1-x^2}	+		+		+	
f'(x)	_	0	+	0	-	
f(x)	¥		7	$\frac{1}{\sqrt{2}}e^{\frac{1}{2}}$	7	

Partie B

- **1.** D'après le graphique, il semble que $g(x) \ge f(x)$ pour tout x, donc que la courbe deg est partout au dessus de celle de f
- **2.** Pour $x \le 0$, on a $xe^{1-x^2} \le 0$ donc $f(x) \le 0$ alors que, l'exponentielle étant toujours strictement positive, on a : $g(x) = e^{1-x} > 0$.

Un nombre négatif étant toujours strictement inférieur à un nombre positif, on a bien pour tout réel x appartenant à $]-\infty$; 0, f(x) < g(x).

Corrigé Exercice 11

Corrigé Partie A

- **1.** Attention: il s'agit du maximum de C' pas de C, donc la question revient à savoir à quel moment la croissance des courbes est la plus rapide. C'est visiblement le cas pour t = 0, car la tangente aux courbes semble y avoir le coefficient directeur le plus grand.
- **2.** Le coefficient directeur de la tangente en 0 est plus grand pour la courbe \mathcal{C}_1 que pour la courbe \mathcal{C}_2 . Donc la personne la moins corpulente est la personne P_1

3. a.
$$f'(t) = Ae^{-t} + At(-e^{-t}) = A(1-t)e^{-t}$$
 Donc $f'(0) = Ae^{0} = A$

b. L'affirmation est fausse. D'après la question précédente, la vitesse d'absorption à l'ingestion (f'(0)) est d'autant plus grande que A est grand. Or la vitesse est plus grande pour une personne de plus faible corpulence. C'est donc l'inverse, « À quantité d'alcool absorbée égale, plus A est grand, moins la personne est corpulente. »

Corrigé Partie B

- 1. On peut utiliser les résultats de la 1^{ère} partie pour A=2. On a alors $f'(t)=2(1-t)e^{-t}$
- **2.** Avec $f(1) = 2e 1 = \frac{2}{e}$

t	0	1	+∞
1-t	+	0	-
f'(t)	+	0	-
f(t)	0 7	$\frac{2}{e}$	7

La concentration d'alcool dans le sang de Paul est maximale au bout d'une heure. Elle est d'environ 0,74 g.L-1

- **4. a.** f est continue et strictement croissante sur [0;1] avec f(0) < 0,2 et f(1) > 0,2. D'après le théorème des valeurs intermédiaires, l'équation f(t) = 0,2 admet donc une unique **solution t_1 sur [0;1]**. De même, f est strictement décroissante sur $[1;+\infty[$ et on a par exemple f(4) < 0,2. Donc l'équation f(t) = 0,2 admet donc une unique **solution t_2 sur [1;+\infty[**
 - **b.** à la calculatrice, on trouve $t_2 \simeq 3.6$.

Donc Paul doit attendre au moins 3 heures et 36 minutes pour reprendre le volant.