Corrigés Savoirs Fle. 5

Corrigé Exercice 18

1) a)
$$\ln(1.02) > 0$$
 b) $\ln(0.02)$

1) a)
$$\ln(1.02) > 0$$
 b) $\ln(0.98) < 0$ **c)** $\ln\left(\frac{5}{8}\right) < 0$

d)
$$\ln\left(\frac{0,1}{0,03}\right) = \ln\left(\frac{10}{3}\right) > 0$$
 e) $-3\ln\left(\frac{1}{4}\right) = 3\ln 4 > 0$ (ou $\ln\left(\frac{1}{4}\right) < 0$ et ...)

2) a)
$$\ln x > -3 \iff x > e^{-3} \implies S =]e^{-3}; +\infty[$$

b)
$$e^x \le 7 \iff x \le \ln 7 \implies S =]-\infty; \ln 7]$$

c)
$$e^x - 3 \le 0 \iff e^x \le 3 \iff x \le \ln 3 \implies S =]-\infty; \ln 3$$

d)
$$2e^x - 1 \ge 2 \iff e^x \ge \frac{3}{2} \iff x \ge \ln \frac{3}{2} \implies S = \left[\ln \left(\frac{3}{2}\right); +\infty\right]$$

$$e) 1 + 3 \ln x > -2 \iff \ln x > -1 \iff x > e^{-1} \implies S = \left| \frac{1}{e}; +\infty \right|$$

$$f) -3\ln x - 2 \ge 0 \Leftrightarrow \ln x \le -\frac{2}{3} \iff x \le e^{-\frac{2}{3}}$$

On résout pour
$$x > 0 \implies S = \left[\mathbf{0}; e^{-\frac{2}{3}}\right]$$

3) a)
$$\ln(4-x) \ge 2 \Leftrightarrow 4-x \ge e^2 \Leftrightarrow x \le 4-e^2$$

$$\Rightarrow S =]-\infty; 4 - e^2]$$

b)
$$e^{x+3} \le 5 \Leftrightarrow x+3 \le \ln 5 \Leftrightarrow x \le \ln 5 - 3$$

$$S =]-\infty; \ln 5 - 3]$$

c)
$$\ln\left(\frac{1}{2}x+2\right) < -1 \iff \frac{1}{2}x+2 \le e^{-1} \iff x \le \frac{2}{e}-4$$

On résout pour $x > -4 \Rightarrow S = \left[-4; -4 + \frac{2}{e} \right]$

$$ed$$
) $e^{5-x} - 2 \le 0 \iff 5 - x \le \ln 2 \iff x \ge 5 - \ln 2$

$$\Rightarrow S = [5 - \ln 2; +\infty[$$

$$e) \ln(x+2) + 3 \ge 0 \iff x+2 \ge e^{-3} \iff x \ge e^{-3} - 2$$

$$\Rightarrow S = [-2 + e^{-3}; +\infty[$$

$$f) e^{-x^2} \le \frac{1}{2} \Leftrightarrow -x^2 \le \ln \frac{1}{2} \Leftrightarrow -x^2 \le -\ln 2 \Leftrightarrow x^2 \ge \ln 2$$

$$\Leftrightarrow x \le -\sqrt{\ln 2} \text{ ou } x \ge \sqrt{\ln 2}$$

$$S = \left] -\infty; -\sqrt{\ln 2}\right] \cup \left[\sqrt{\ln 2}; +\infty\right[$$

4) a)
$$e^{-3x} > e \Leftrightarrow -3x > 1 \Leftrightarrow x < -\frac{1}{3} \implies S = \left[-\infty; -\frac{1}{3}\right]$$

b)
$$e^{2x} \ge e^{x+4} \iff 2x \ge x+4 \iff x \ge 4 \implies S = [4; +\infty[$$

b)
$$\frac{1}{e^{x^2}} \ge e^{5x} \iff e^{-x^2} \ge e^{5x} \iff -x^2 \ge 5x \iff x(x+5) \le 0$$

 $x_1 = -5$; $x_2 = 0 \implies \mathbf{S} = [-\mathbf{5}; \mathbf{0}]$

Un peu plus...

1) f)
$$\ln \left(5 - \frac{16}{7}\right) = \ln \left(\frac{19}{7}\right) > 0$$

g)
$$-2\ln\left(\frac{9}{4}-1\right) = -2\ln\left(\frac{5}{4}\right) < 0$$

(à cause du -2)

$$g) \ln x + 1 \le 6 \Leftrightarrow \ln x \le 5 \Leftrightarrow x \le e^5$$

On résout pour
$$x > 0 \implies S =]0; e^5]$$

$$h) \quad \ln x \le 1 \Leftrightarrow \quad x \le e$$

On résout pour $x > 0 \implies S = [0; e]$

i)
$$\frac{2}{3} - e^x \ge 0 \Leftrightarrow e^x \le \frac{2}{3}$$

$$\Leftrightarrow x \le \ln\left(\frac{2}{3}\right) \Rightarrow S = \left]-\infty; \ln\left(\frac{3}{2}\right)\right]$$

3) *g*)
$$e^{3x-1} > 12$$

$$\Leftrightarrow$$
 $3x - 1 \ge \ln 2$

$$\Leftrightarrow x \ge \frac{\ln 2 + 1}{3}$$

$$\Rightarrow S = \left[\frac{\ln 2 + 1}{2}; +\infty\right]$$

$$h) \ln \left(\frac{1}{x} + 1\right) > 2 \iff \frac{1}{x} + 1 > e^2$$

$$\Leftrightarrow \frac{1}{x} > e^2 - 1$$

Pour
$$x > 0 \iff 0 < x < \frac{1}{e^2 - 1}$$

$$\Rightarrow S = \left] \mathbf{0}; \frac{1}{e^2 - 1} \right[$$

4) f)
$$\frac{1}{e^{x-1}} < e^{2x+3} \iff e^{-x+1} < e^{2x+3}$$

 $\iff -x+1 < 2x+3 \iff 3x > -2$

$$S = \left] -\frac{2}{2}; +\infty \right[$$

d)
$$\ln(-x+1) \ge \ln x \Leftrightarrow -x+1 \ge x \Leftrightarrow x \le \frac{1}{2}$$

on résout pour $x \in]0;1[\Rightarrow S =]0;\frac{1}{2}]$

e)
$$\ln\left(\frac{3x-1}{x+2}\right) \ge 0 \Leftrightarrow \ln\left(\frac{3x-1}{x+2}\right) \ge \ln 1 \Leftrightarrow \frac{3x-1}{x+2} \ge 1 \Leftrightarrow \frac{3x-1-(x+2)}{x+2} \ge 0 \Leftrightarrow \frac{2x-3}{x+2} \ge 0$$

Il faut faire un tableau de signe pour x > 1

х	1		3 2		+∞
2x - 3		_	0	+	
x + 2		+		+	
Quotient		_	0	+	

$$S = \left[\frac{3}{2}; +\infty\right[$$

g) $e^2 - e^{x^2 - x} \le 0 \iff e^2 \le e^{x^2 - x}$
$\Leftrightarrow \ 2 \le x^2 - x \ \Leftrightarrow \ x^2 - x - 2 \ge 0$
$\Delta = 9 \text{ et } x_1 = 2 \text{ ; } x_2 = -1$
$S =]-\infty; -1] \cup [2; +\infty[$

h)
$$\ln(3-2x) < \ln(x-3)$$

 $\Leftrightarrow 3-2x < x-3 \Leftrightarrow x > 2$
on résout pour $x > 3 \Rightarrow S =]3; +\infty[$

i)
$$\ln(x^2 + x) \le \ln 6$$

 $\Leftrightarrow x^2 + x \le 6 \Leftrightarrow x^2 + x - 6 \le 0$
avec $\Delta = 25$; $x_1 = 2$ et $x_2 = -3$
c'est négatif à l'intérieur des racines sur $[-3; 2]$, mais on résout pour $x > 0$
 $\Rightarrow S =]0; 2]$

Corrigé Exercice 19

- **1)** *a*) $4^n \ge 204 \iff n \ln 4 \ge \ln 204 \iff n \ge \frac{\ln 204}{\ln 4} \text{ or } \frac{\ln 204}{\ln 4} \simeq 3.8$ Donc **pour** $n \ge 4$
- **b**) $(0,7)^n \le 10^{-2} \Leftrightarrow n \ln 0,7 \le \ln 0,01 \Leftrightarrow n \ge \frac{\ln 0,01}{\ln 0,7} \text{ car } \ln 0,7 < 0$ or $\frac{\ln 0,01}{\ln 0,7} \simeq 12,9 \Rightarrow \text{pour } n \ge 13$
- c) $196 6 \times 5^n \le 100 \Leftrightarrow 5^n \ge 16 \Leftrightarrow n \ln 5 \ge \ln 16 \Leftrightarrow n \ge \frac{\ln 16}{\ln 5}$ or $\frac{\ln 16}{\ln 5} \simeq 1.7 \Rightarrow \text{pour } n \ge 2$
- 2) a. $1000 5 \times 2^n \le 0 \Leftrightarrow 2^n \ge 200 \Leftrightarrow n \ln 2 \ge \ln 200$ $\Leftrightarrow n \ge \frac{\ln 200}{\ln 2}$ or $\frac{\ln 204}{\ln 4} \simeq 7.6$ \Rightarrow pour $n \ge 8$ (à partir du rang 8)

b.
$$30 + 2 \times 4^{n-1} > 30\ 000 \Leftrightarrow 4^{n-1} > 14\ 985$$
 $\Leftrightarrow \ln(4^{n-1}) > \ln 14\ 985 \Leftrightarrow (n-1)\ln 4 > \ln 14\ 985 \text{ or } \ln 4 > 0$ donc $n-1 > \frac{\ln 14\ 985}{\ln 4} \Leftrightarrow n > \frac{\ln 14\ 985}{\ln 4} + 1 \text{ avec } \frac{\ln 14\ 985}{\ln 4} \simeq 6,9$ Donc pour $n \geq 8$ à partir du rang 8

3) On a $S_n = S_0 \times q^n = 2 \times 3^n$ Donc on cherche $2 \times 3^n \ge 12\ 680 \Leftrightarrow 3^n \ge 6\ 340$ $\Leftrightarrow \ln(3^n) \ge \ln 6340 \Leftrightarrow n \ln 3 \ge \ln 6340 \Leftrightarrow n \ge \frac{\ln 6340}{\ln 3}$ or $\frac{\ln 6340}{\ln 3} \simeq 7,97$ Donc $n \ge 8$ à partir du rang 8

Un peu plus...

1)
$$-5 \times 2^{n} \le -105$$

 $\Leftrightarrow 5 \times 2^{n} \ge 105$
 $\Leftrightarrow 2^{n} \ge 21$
 $\Leftrightarrow n \ln 2 \ge \ln 21$
 $\Leftrightarrow n \ge \frac{\ln 21}{\ln 2}$ or $\frac{\ln 21}{\ln 2} \simeq 4,4$
Donc **pour** $n \ge 5$

2) $10 \times 0.9^n + 250 < 252$

$$\Leftrightarrow 10 \times 0.9^{n} < 2$$

$$\Leftrightarrow 0.9^{n} < 0.2$$

$$\Leftrightarrow n \ln 0.2 < \ln 0.9$$

$$\Leftrightarrow n > \frac{\ln 0.2}{\ln 0.9}$$
or
$$\frac{\ln 0.2}{\ln 0.9} \simeq 15.3$$
Donc $n \ge 16$
(à partir du rang 16)

3) On a $u_n = u_1 \times q^{n-1} = 100 \times \left(\frac{4}{5}\right)^{n-1}$ Donc on cherche $100 \times \left(\frac{4}{5}\right)^{n-1} \le 1$ $\Leftrightarrow \left(\frac{4}{5}\right)^{n-1} \le \frac{1}{100} \Leftrightarrow \ln\left(\left(\frac{4}{5}\right)^{n-1}\right) \le \ln\left(\frac{1}{100}\right)$ $\Leftrightarrow (n-1)\ln\left(\frac{4}{5}\right) \le \ln\left(\frac{1}{100}\right)$

et
$$\ln\left(\frac{4}{5}\right) < 0$$
 donc $n - 1 \ge \frac{\ln\left(\frac{1}{100}\right)}{\ln\left(\frac{4}{5}\right)}$

 $\Leftrightarrow n \ge \frac{\ln\left(\frac{1}{100}\right)}{\ln\left(\frac{4}{5}\right)} + 1 \quad \text{Or} \quad \frac{\ln\left(\frac{1}{100}\right)}{\ln\left(\frac{4}{5}\right)} \simeq 20,6 \quad \text{donc}$ $n \ge 22 \quad (\grave{\mathbf{a}} \text{ partir du rang } 22)$

Corrigé Exercice 20

1)
$$D_f =]0; +\infty[$$

 $2 \ln x + 4 \ge 0 \Leftrightarrow \ln x \ge -2$
 $\Leftrightarrow x \ge e^{-2}$

x	0		e^{-2}	+∞
f(x)	11	-	0	+

$$D_k =]2; +\infty[$$

 $\ln(x-2) \ge 0 \iff x-2 \ge 1$
 $\iff x \ge 3$

x	2	3	$+\infty$
k(x)		- 0	+

$$D_h = \mathbb{R}$$

$$2 - e^{-x} \ge 0 \iff e^{-x} \le 2$$

$$\iff -x \le \ln 2 \iff x \ge -\ln 2$$

x	-∞	- ln 2	+∞
g(x)	ı	0 +	

$$\begin{split} D_l &= \left] - \infty; \frac{1}{2} \right[\\ \ln(1 - 2x) &\geq 2 \iff 1 - 2x \geq e^2 \\ \Leftrightarrow 2x \leq 1 - e^2 \iff x \leq \frac{1 - e^2}{2} \end{split}$$

x			$\frac{1-e^2}{2}$	1 2
l(x)	Ш	+	0	-

$$D_i = \mathbb{R}$$

$$e^x - 3 \ge 0 \iff e^x \ge 3 \iff x \ge \ln 3$$

x	$-\infty$	ln 3	$+\infty$	
h(x)	-	- 0	+	

 $D_m = \mathbb{R}$ $-2e^{3x-6} \le 0$ car exponentielle toujours positive

х	-∞	+∞
m(x)		_

$$D_j =]0; +\infty[$$

 $5 \ln x - 20 \ge 0 \Leftrightarrow \ln x \ge 4 \Leftrightarrow x \ge e^4$

x	0	e^4	$+\infty$
j(x)		- 0	+

$$D_n =]-3; +\infty[$$

 $\ln(x+3) \ge 2 \iff x+3 \ge e^2 \iff x \ge e^2 - 3$

x	-3	$e^{2}-3$	+∞
n(x)	Ξ	- 0	+

2) Je vous laisse faire les étapes...

$$D_f =]1; +\infty[\ln(x-1) \ge 0 \Leftrightarrow x-1 \ge 1$$

x	1		2		+∞
x		+		+	
ln(x-1)		-	0	+	
f(x)	H	_	0	+	·

$$D_h =]0; +\infty[1 - \ln x \ge 0 \Leftrightarrow \ln x \le 1 \Leftrightarrow x \le e]$$

x	0		1		e		+∞
$\ln x$	-	_	0	+		+	
$1 - \ln x$		+		+	0	_	
h(x)	Ш	_	0	+	0	_	

$$D_i =]0; +\infty[$$
 et $i(x) = x(5 - \ln x)$

x	0		e^5		+∞
x	0	+		+	
$5 - \ln x$	-	+	0	_	
i(x)	11	+	0	_	

$$D_j =]\ln 2; +\infty[$$
 et $\ln(e^x - 2) \ge 0$
 $\Leftrightarrow e^x - 2 \ge 1 \Leftrightarrow e^x \ge 3 \Leftrightarrow x \ge \ln 3$

x	ln 2		ln 3		+∞
j(x)	- 11	_	0	+	

$$D_k =]0; e^3[\cup]e^3; +\infty[$$

x	0		e		e^3		+∞
$\ln x - 1$		-	0	+		+	
$3 - \ln x$		+		+	0	_	
k(x)	II	_	0	+	H		

$$D_l =]-\infty; 0[\quad \ln(-x) \geq 0 \iff -x \geq 1 \iff x \leq -1$$

х	$-\infty$		-1		0
ln(-x)		+	0	_	
2x - 1		-		-	
l(x)		_	0	+	H

Corrigé Exercice 21

a)
$$D_q =]0; +\infty[$$

b)
$$g'(x) = 3 \ln x + 3x \times \frac{1}{x} - 9 = 3 \ln x + 3 - 9 = 3 \ln x - 6$$
 CQFD.

c)
$$g'(x) \ge 0 \Leftrightarrow 3 \ln x - 6 \ge 0 \Leftrightarrow \ln x \ge 2 \Leftrightarrow x \ge e^2 \implies S = [e^2; +\infty[$$

On a
$$g(1) = 3 \ln 1 - 9 + 10 = 1$$

$$g(e^2) = 3e^2 \ln e^2 - 9e^2 + 10 = 3e^2 \times 2 - 9e^2 + 10 = 10 - 3e^2$$

$$g(20) = 60 \ln 20 - 180 + 10 = 60 \ln 20 - 170.$$

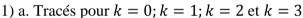
x	1		e^2		20
g'(x)		_	0	+	
g(x)	1	>	$10 - 3e^2$	7	$60 \ln 20 - 170$

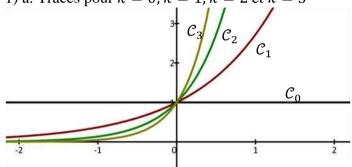
d) g est continue et strictement décroissante sur $[1;e^2]$ avec g(1)>0 et $g(e^2)<0$. D'après le théorème des valeurs intermédiaires, l'équation g(x)=0 admet donc une solution sur cet intervalle. On procède de même sur l'intervalle $[e^2;20]$, avec $g(e^2)<0$, g(20)>0 et g croissante. L'équation g(x)=0 a donc **deux solutions** sur l'intervalle [1;20].

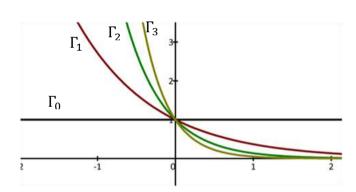
On a : g(1,17) > 0 et g(1,18) < 0 donc la première solution est $x_1 \approx 1, 2$.

Et : g(16,38) < 0 et g(16,39) > 0 donc la deuxième solution est $x_2 \approx 16, 4$.

Corrigé Exercice 22







b. On a:
$$f'_{k}(x) = ke^{kx}$$
 et $g'_{k}(x) = -ke^{-kx}$

Si k = 0, alors les dérivées sont nulles, et les **fonctions sont constantes** : $f_0(x) = e^0 = 1$ et $g_0(x) = 1$ Si k > 0, alors f' est strictement positive, et f est strictement croissante, et g' est strictement négative, donc

g est strictement décroissante

c. Pour se donner un idée, tracés pour k = 1 et k = 5

Si k = 0 les deux courbes sont confondues (les fonctions sont égales)

Si
$$k > 0$$
, on a $f(x) - g(x) = e^{kx} - e^{-kx} = e^{kx} - \frac{1}{e^{kx}}$

On cherche à résoudre $f(x) - g(x) \ge 0 \Leftrightarrow e^{kx} - \frac{1}{e^{kx}} \ge 0 \Leftrightarrow e^{kx} \ge \frac{1}{e^{kx}} \Leftrightarrow (e^{kx})^2 \ge 1$ car l'exponentielle est positive $\Leftrightarrow e^{2kx} \ge 1 \Leftrightarrow 2kx \ge 0 \Leftrightarrow x \ge 0$ car k > 0

Donc \mathcal{C}_k est au dessus de Γ_k sur \mathbb{R}^+ et en dessous sur \mathbb{R}^-

d. $f_m(x) - f_k(x) \ge 0 \Leftrightarrow e^{mx} - e^{kx} \ge 0 \Leftrightarrow e^{mx} \ge e^{kx} \Leftrightarrow mx \ge kx \Leftrightarrow (m-k)x \ge 0$ Comme m > k, on a (m-k) > 0 Donc $f_m(x) - f_k(x) \ge 0$ pour $x \ge 0$

 ${\mathcal C}_m$ est au dessus de ${\mathcal C}_k$ sur ${\mathbb R}^+$ et en dessous sur ${\mathbb R}^-$

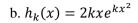
e.
$$g_m(x) - g_k(x) \ge 0 \Leftrightarrow e^{-mx} - e^{-kx} \ge 0 \Leftrightarrow e^{-mx} \ge e^{-kx} \Leftrightarrow -mx \ge -kx \Leftrightarrow (-m+k)x \ge 0$$

Comme $m > k$, on a $(-m+k) < 0$ Donc $g_m(x) - g_k(x) \ge 0$ pour $x \le 0$

 Γ_m est au dessus de Γ_k sur \mathbb{R}^- et en dessous sur \mathbb{R}^+

Corrigé Exercice 23

a. Tracés pour k = 0; k = 1; k = 2 et k = 3



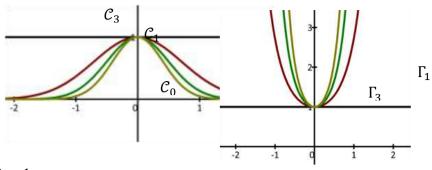
et
$$i_k(x) = -2kxe^{-kx^2}$$

Si k = 0, alors les dérivées

sont nulles, et les fonctions sont

constantes : $h_0(x) = e^0 = 1$ et $i_0(x) = 1$

Si k > 0, alors



h(x)	7	1	1
h'(x)	_	0	+
2kx	_	0	+
х		0	

x		0	
-2kx	+	0	_
i'(x)	+	0	_
i(x)	7	1	7

 Γ_0

c. Si k = 0 les deux courbes sont confondues (les fonctions sont égales)

Si k > 0, d'après les tableaux de variations, on a $h(x) \ge 1$ et $i(x) \le 1$ pour tout x de \mathbb{R} .

Donc \mathcal{C}_k est au dessus de Γ_k sur \mathbb{R} . Elles ont le point (0;1) en commun.

d. $h_m(x) - h_k(x) \ge 0 \Leftrightarrow e^{mx^2} - e^{kx^2} \ge 0 \Leftrightarrow e^{mx^2} \ge e^{kx^2} \Leftrightarrow mx^2 \ge kx^2 \Leftrightarrow (m-k)x^2 \ge 0$ Comme m > k, on a (m-k) > 0 Donc $f_m(x) - f_k(x) > 0$ pour $x \ne 0$ et $f_m(0) = f_k(0)$ \mathcal{C}_m est au dessus de \mathcal{C}_k sur \mathbb{R} . Toutes les courbes ont le point (0; 1) en commun.

e. $g_m(x) - g_k(x) \ge 0 \Leftrightarrow e^{-mx^2} - e^{-kx^2} \ge 0 \Leftrightarrow e^{-mx^2} \ge e^{-kx^2} \Leftrightarrow -mx^2 \ge -kx^2$ $\Leftrightarrow (-m+k)x^2 \ge 0$ Comme m > k, on a (-m+k) < 0 Donc $g_m(x) - g_k(x) < 0$ pour $x \ne 0$ Γ_m est en dessous sur \mathbb{R} . Toutes les courbes ont le point (0; 1) en commun.