Savoirs Si.1: Opérations sur les inégalités

Exercice 1: Opérations successives sur des inégalités

1) Compléter les encadrements (ou inégalités) avec les \leq ou \geq qui conviennent

a) $x \le 5 \Leftrightarrow -2x \dots -10$	$b) u_n \ge -3 \Leftrightarrow u_n + 7 \dots 4$	c) $x \ge 2 \Leftrightarrow \frac{1}{x} \dots \frac{1}{2}$
d) $u_n \leq -2 \Leftrightarrow (u_n)^2 \dots 4$	e) $0 \le x \le 4 \iff 0 \dots \frac{1}{2}x \dots 2$	f) $0 \le x \le 6 \iff 0 \dots - x \dots - 6$
g) $0 \le x \le 1 \Leftrightarrow 1 \dots e^x \dots e$	h) $1 \le u_n \le 2 \iff 1 \dots \frac{1}{u_n} \dots \frac{1}{2}$	i) $x \ge 2 \iff \sqrt{x} \dots \sqrt{2}$

2) Compléter les enchainements d'encadrements (ou inégalités) avec les \leq ou \geq qui conviennent

a) $0 \le u_n \le 5$	b) $-2 \le x \le 4$	c) $-1 \le x \le 0$	$\begin{array}{ll} \textbf{d)} & 0 \leq u_n \leq 4 \\ \Leftrightarrow & 0 \dots \sqrt{u_n} \dots 2 \\ \Leftrightarrow & 2 \dots \sqrt{u_n} + 2 \dots 4 \end{array}$
$\Leftrightarrow 0 \dots 2u_n \dots 10$	$\Leftrightarrow 1 \dots -\frac{1}{2}x \dots -2$	$\Leftrightarrow 1 \dots x^2 \dots 0$	
$\Leftrightarrow -3 \dots 2u_n - 3 \dots 7$	$\Leftrightarrow 2 \dots -\frac{1}{2}x + 1 \dots -1$	$\Leftrightarrow 0 \dots x^2 - 1 \dots - 1$	
e) $4 \le x \le 5$	f) $-2 \le u_n \le 3$	\Leftrightarrow 1 e^x e	h) $1 \le x \le 2$
$\Leftrightarrow 1 \dots x - 3 \dots 2$	$\Leftrightarrow 6 \dots -3u_n \dots -9$		$\Leftrightarrow 1 \dots x^2 \dots 4$
$\Leftrightarrow 1 \dots (x - 3)^2 \dots 4$	$\Leftrightarrow 13 \dots 7 -3u_n \dots -2$		$\Leftrightarrow 0 \dots \ln(x^2) \dots \ln 4$

3) Dans chaque cas, déduire de l'encadrement sur x un encadrement sur f(x)

a)
$$f(x) = 3 - 5x$$
 pour $-1 \le x \le 2$

b)
$$f(x) = 2x^2 - 4$$
 pour $1 \le x \le 3$

c)
$$f(x) = \frac{1}{x} + 2$$
 pour $\frac{1}{3} \le x \le \frac{1}{2}$

d)
$$f(x) = 1 - 2e^x$$
 pour $-1 \le x \le 0$

 $-\infty$

 χ

f(x)

+∞

25

7

Exercice 2: Utilisation du sens de variation d'une fonction

- 1) Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + x + 6$ dont on donne ci-contre le tableau de variation.
 - a) Déterminer pour $-1 \le x \le 0$ un encadrement de f(x)
 - **b)** Montrer que, pour $x \in [2;3]$ on a $0 \le f(x) \le 4$
 - c) Peut-on trouver un encadrement pour f(x) quand $-1 \le x \le 1$?
- **2)** Soit g la fonction définie sur [0;4] par $g(x) = \ln(x+1)$.
 - a) Calculer g'(x) et montrer que la fonction g est strictement croissante sur $[0\,;4]$
 - **b)** justifier que, pour $0 \le x \le e-1$ on a $0 \le \ln(x+1) \le 1$
- **3)** Soit h la fonction définie sur [0;1] par $h(x)=e^{1-x}-1$
 - a) Déterminer le tableau de variation de h sur $\left[0\ ; 1\right]$
 - **b)** En déduire que, pour tout $x \in \left[\frac{1}{2}; 1\right]$, on a : $1 \le e^{1-x} \le \sqrt{e}$

Exercice 3: Élargissement d'inégalités

1) Déterminer dans chaque cas si l'implication vers un élargissement est vraie ou fausse.

a) $x \le \frac{5}{2} \implies x \le 3$	$\mathbf{b)} \ u_n \ge -\frac{1}{2} \Rightarrow \ u_n \ge 0$	$c) \ x \ge \sqrt{2} \ \Rightarrow \ x \ge 0$
d) $x \le e^{-2} \implies x \le 1$	e) $1 \le x \le 3 \Rightarrow 0 \le x \le \frac{7}{2}$	f) $-2 \le u_n \le -\frac{1}{2} \implies -\frac{3}{2} \le u_n \le -1$
$\mathbf{g)} \ \sqrt{3} \le x \le \sqrt{11} \Rightarrow \ 1 \le x \le 4$	h) $u_n \le \ln 2 \implies 0 < u_n \le 2$	i) $\ln 2 \le x \le \ln 5 \Rightarrow 0 \le x \le 2$

2) Élargir les encadrements aux plus proches entiers.

a) $e^{-1} \le x \le e$ b) $-\frac{5}{4} \le x \le \frac{2}{3}$	c) $\sqrt{2} \le u_n \le \sqrt{27}$	d) $-1.6 \le u_n \le 0.2$	$e) x \le \ln\left(\frac{1}{3}\right)$
---	-------------------------------------	----------------------------------	--

3) Élargir une des bornes à zéro, quand c'est possible.

a) $\frac{1}{2} \le x \le \frac{5}{3}$ b) $-5 \le u_n \le -2$	c) $\sqrt{3} \le x \le \sqrt{8}$	$d) \ln\left(\frac{1}{5}\right) \le u_n \le \ln\left(\frac{8}{5}\right)$	e) $x \ge e^{-2}$
---	----------------------------------	--	--------------------------

4) On a toujours $n \ge 0$ et $x \ge 0$ dans les inégalités qui suivent. En déduire quand c'est possible un minorant et/ou un majorant constant.

a)
$$f(x) \ge x + 2$$
 b) $u_n \le 2 - n^2$ **c)** $0 \le f(x) \le 5 - 2x$ **d)** $3 + n \le u_n \le 3 + 2n$