Savoir Fle. 4: Équations

Entraînement 1

Résoudre les équations suivantes sur l'ensemble de définition donné

1) a)
$$\ln(3-2x) = 2 \text{ sur } D = \left] -\infty; \frac{3}{2} \right[$$
 b) $2-3e^x = -4 \text{ sur } \mathbb{R}$ **c)** $2 \ln x - 1 = -4 \text{ pour } x > 0$

b)
$$2 - 3e^x = -4 \text{ sur } \mathbb{R}$$

c)
$$2 \ln x - 1 = -4$$
 pour $x > 0$

2) a)
$$3 - 2 \ln(1 + 4x) = 5$$
 b) $\ln(2 - x) = \ln(1 + x)$ pour $x > -\frac{1}{4}$ sur $D =]-1; 2[$

b)
$$\ln(2-x) = \ln(1+x)$$

sur $D =]-1; 2[$

c)
$$e^{2-x} = \frac{1}{e^{2x-x^2}}$$
 sur \mathbb{R}

3)
$$(x-1)\ln(3+x) = 0 \text{ sur } D =]-3; +\infty[$$

Entraînement 2

Résoudre les équations suivantes sur l'ensemble de définition donné

1) a)
$$-2 \ln x + 7 = 1$$
 pour $x > 0$

b)
$$1 + e^{3-2x} = 3 \text{ sur } \mathbb{R}$$

c)
$$\ln(x^2 + 1) = -2 \text{ sur } \mathbb{R}$$

2) a)
$$\ln(1+2x) = \ln(x-1)$$

 $\sup D =]1; +\infty[$

b)
$$e^{2x+1} = e^{1-x}$$
 sur \mathbb{R}

c)
$$e \times e^{4-x} = 1$$
 sur \mathbb{R}

3) Résoudre dans
$$\mathbb{R}$$
 l'équation : $4 - e^{2x} = 3e^x$

Entraînement 3

Résoudre les équations suivantes sur l'ensemble de définition donné

1) a)
$$2 - 3 \ln x = 11 \text{ sur }]0; +\infty[$$
 b) $e^{1-2x} = 3 \text{ sur } \mathbb{R}$

b)
$$e^{1-2x} = 3 \text{ sur } \mathbb{R}$$

c)
$$ln(4-2x) = -1$$
 pour $x < 2$

2) a)
$$\ln(4 + 2x) = \ln 2$$

pour $x \in]-2; +\infty[$

b)
$$\ln(x^2) - \ln(3x) = 0$$

pour tout réel $x > 0$

c)
$$e^{1+x} = \frac{1}{e^{2-x}}$$
 sur \mathbb{R}

3)
$$\ln^2 x - (e+1) \ln x + e = 0$$
 pour $x > 0$

Entraînement 4

Résoudre les équations suivantes sur l'ensemble de définition donné

1) a)
$$3 \ln(2x - 6) = 9 \text{ sur } D =]3; +\infty[$$
 b) $10e^{-\frac{x}{2}} = 2 \text{ sur } \mathbb{R}$

b)
$$10e^{-\frac{x}{2}} = 2 \text{ sur } \mathbb{R}$$

c)
$$e^{1-x} + 2 = 0$$
 pour $x \in \mathbb{R}$

2) a)
$$ln(x-3) = ln 5$$

pour tout réel $x > 3$

b)
$$e^{4-5x} = e^{2+x}$$
 sur \mathbb{R}

c)
$$e - e^{x^2 - 3} = 0$$
 sur \mathbb{R}

3)
$$\begin{cases} 2 \ln x - \ln y = -4 \\ \ln x + 3 \ln y = 5 \end{cases}$$
 pour x et y deux réels strictement positifs

Entraînement 5

Résoudre les équations suivantes sur l'ensemble de définition donné

1) a)
$$4 - e^{2x-1} = 2$$
 sur \mathbb{R}

b)
$$2 \ln x - 6 = -\ln x \text{ sur } \mathbb{R}^{+*}$$

1) a)
$$4 - e^{2x-1} = 2$$
 sur \mathbb{R} **b)** $2 \ln x - 6 = -\ln x$ sur \mathbb{R}^{+*} **c)** $e^{-x} = \sqrt{5}$ pour tout réel x

2) a)
$$\ln(x^2) = \ln 9$$
 pour tout $x \neq 0$ **b)** $e^{x^2 - 1} = e^{2 + 2x}$ sur \mathbb{R}

b)
$$e^{x^2-1} = e^{2+2x}$$
 sur \mathbb{R}

c)
$$\ln(x) - 1 = \ln(x + 2)$$

pour $x \in]0; +\infty[$

3)
$$(e^x - 3)(4 + \ln x) = 0$$
 pour tout réel $x > 0$

Corrections Savoir Fle.4

Corrigé Entraînement 1

1) a)
$$\ln(3 - 2x) = 2$$

 $\Leftrightarrow 3 - 2x = e^2$
 $\Rightarrow x - \frac{3 - e^2}{2} \Rightarrow x - \frac{3 - e^2}{2}$

b)
$$2 - 3e^x = -4$$

 $\Leftrightarrow -3e^x = -6$
 $\Leftrightarrow e^x = 2$
 $\Leftrightarrow x = \ln 2 \Rightarrow S = {\ln 2}$

1) a)
$$\ln(3-2x) = 2$$

 $\Leftrightarrow 3-2x = e^2$
 $\Leftrightarrow x = \frac{3-e^2}{2} \Rightarrow S = \left\{\frac{3-e^2}{2}\right\}$

$$\Leftrightarrow x = \ln 2 \Rightarrow S = \left\{\ln 2\right\}$$
c) $2 \ln x - 1 = -4$
 $\Leftrightarrow \ln x = -\frac{3}{2}$
 $\Leftrightarrow x = e^{-\frac{3}{2}} \Rightarrow S = \left\{e^{-\frac{3}{2}}\right\}$

2) a)
$$3 - 2\ln(1 + 4x) = 5 \Leftrightarrow \ln(1 + 4x) = -1 \Leftrightarrow 1 + 4x = \frac{1}{e} \Leftrightarrow x = \frac{1}{4}(\frac{1}{e} - 1) \Rightarrow S = \left\{\frac{1 - e}{4e}\right\}$$

b)
$$\ln(2-x) = \ln(1+x) \Leftrightarrow 2-x = 1+x \Leftrightarrow 2x = 1 \Leftrightarrow x = \frac{1}{2} \Rightarrow S = \left\{\frac{1}{2}\right\}$$

c)
$$e^{2-x} = \frac{1}{e^{2x-x^2}} \iff e^{2-x} = e^{-2x+x^2} \iff 2-x = -2x+x^2 \iff x^2-x-2 = 0$$

 $\Delta = 9; x_1 = 2 \text{ et } x_2 = -1 \implies S = \{-1; 2\}$

3) Un produit est nul si un des facteurs est nul
$$(x-1)\ln(3+x) = 0 \Leftrightarrow x-1 = 0$$
 ou $\ln(3+x) = 0 \Leftrightarrow x=1$ ou $3+x=1 \Rightarrow S = \{1; 2\}$

Corrigé Entraînement 2

1) a)
$$-2 \ln x + 7 = 1$$

 $\Leftrightarrow \ln x = \frac{1-7}{-2} = 3$
 $\Leftrightarrow x = e^3 \Rightarrow S = \{e^3\}$

b)
$$1 + e^{3-2x} = 3$$

 $\Leftrightarrow e^{3-2x} = 2$
 $\Leftrightarrow 3 - 2x = \ln 2$
 $\Leftrightarrow -2x = \ln 2 - 3$
 $\Leftrightarrow x = \frac{3-\ln 2}{2} \Rightarrow S = \left\{\frac{3-\ln 2}{2}\right\}$

c)
$$\ln(x^2 + 1) = -2$$

 $\Leftrightarrow x^2 + 1 = e^{-2}$
 $\Leftrightarrow x^2 = e^{-2} - 1$
Mais $e^{-2} - 1 < 0$ et un carré doit toujours être positif
Donc $\mathbf{S} = \emptyset$

2) a) $\ln(1+2x) = \ln(x-1) \Leftrightarrow 1+2x = x-1 \Leftrightarrow x = -2$ Mais ce nombre n'appartient pas à l'ensemble de définition : il n'y a donc pas de solution possible (vous pouvez vérifier graphiquement : les courbes des fonctions $x \to ln(1+2x)$ et $x \to ln(x-1)$ ne se croisent pas) Donc $S = \emptyset$

b)
$$e^{2x+1} = e^{1-x} \iff 2x + 1 = 1 - x \iff 3x = 0 \implies S = \{0\}$$

c)
$$e \times e^{4-x} = 1 \Leftrightarrow e^{5-x} = e^0 \Leftrightarrow 5-x = 0 \Leftrightarrow x = 5 \Rightarrow S = \{5\}$$

3)
$$4 - e^{2x} = 3e^x \iff e^{2x} + 3e^x - 4 = 0$$

En posant comme changement de variable $Y = e^x$ l'équation revient à résoudre : $Y^2 + 3Y - 4 = 0$

$$\Delta$$
= 25; $Y_1 = 1$ et $Y_2 = -4$ \Rightarrow on cherche donc
$$\begin{cases} Y_1 = e^{x_1} = 1 \Leftrightarrow x_1 = 0 \\ Y_2 = e^{x_2} = -4 \Rightarrow pas \ de \ solution \end{cases}$$
 Donc $S = \{0\}$

Corrigé Entraînement 3

1) a)
$$2 - 3 \ln x = 11 \iff \ln x = \frac{11 - 2}{-3} = -3 \iff x = e^{-3} \implies S = \{e^{-3}\}$$

b)
$$e^{1-2x} = 3 \iff 1 - 2x = \ln 3 \iff -2x = \ln 3 - 1 \iff x = \frac{1-\ln 3}{2} \implies S = \left\{\frac{1-\ln 3}{2}\right\}$$

c)
$$\ln(4-2x) = -1 \iff 4-2x = e^{-1} \iff 2x = 4 - \frac{1}{e} \iff x = 2 - \frac{1}{2e} \implies S = \left\{2 - \frac{1}{2e}\right\}$$

2) a)
$$\ln(4+2x) = \ln 2 \iff 4+2x = 2 \iff x = -1 \implies S = \{-1\}$$

b)
$$\ln(x^2) - \ln(3x) = 0 \Leftrightarrow \ln(x^2) = \ln(3x) \Leftrightarrow x^2 = 3x \Leftrightarrow x^2 - 3x = 0 \Leftrightarrow x(x - 3) = 0$$

 $\Leftrightarrow x = 0 \ ou \ x - 3 = 0 \Leftrightarrow x = 0 \ ou \ x = 3$
 la solution $x = 0$ ne convient pas à l'ensemble de définition donc $S = \{3\}$

c)
$$e^{1+x} = \frac{1}{e^{2-x}} \iff e^{1+x} = e^{-2+x} \iff 1+x = -2+x \iff 1 = -2 \implies S = \emptyset$$

3) Changement de variable
$$Y = \ln x$$
 et $Y^2 - (e+1)Y + e = 0$
 $\Rightarrow \Delta = (e+1)^2 - 4e = e^2 - 2e + 1 = (e-1)^2$; $x_1 = \frac{e+1+e-1}{2} = \frac{2e}{2} = e$ et $x_2 = \frac{e+1-e+1}{2} = \frac{2}{2} = 1$
 $S = \{1; e\}$

Corrigé Entraînement 4

1) a)
$$3\ln(2x-6) = 9 \Leftrightarrow \ln(2x-6) = 3 \Leftrightarrow 2x-6 = e^3 \Rightarrow S = \left\{3 + \frac{1}{2}e^3\right\}$$

b)
$$10 e^{-\frac{x}{2}} = 2 \Leftrightarrow e^{-\frac{x}{2}} = \frac{1}{5} \Leftrightarrow -\frac{x}{2} = -\ln 5 \Leftrightarrow x = 2 \ln 5 \Rightarrow S = \{2 \ln 5\}$$

c)
$$e^{1-x} + 2 = 0 \Leftrightarrow e^{1-x} = -2$$
 Or une exponentielle est toujours positive $\Rightarrow S = \emptyset$

2) a)
$$\ln(x-3) = \ln 5 \iff x-3=5 \iff x=8 \implies S = \{8\}$$

b)
$$e^{4-5x} = e^{2+x} \iff 4-5x = 2+x \iff 2=6x \implies S = \{\frac{1}{3}\}$$

c)
$$e - e^{x^2 - 3} = 0 \iff e = e^{x^2 - 3} \iff 1 = x^2 - 3 \iff x^2 = 4 \implies S = \{-2; 2\}$$

3)
$$\begin{cases} 2 \ln x - \ln y = -4 \\ \ln x + 3 \ln y = 5 \end{cases} \Leftrightarrow \begin{cases} \ln y = 2 \ln x + 4 \\ \ln x + 3(2 \ln x + 4) = 5 \end{cases} \Leftrightarrow \begin{cases} \ln y = 2 \ln x + 4 \\ 7 \ln x = -7 \end{cases} \Leftrightarrow \begin{cases} \ln y = 2(-1) + 4 \\ \ln x = -1 \end{cases}$$
$$\Leftrightarrow \begin{cases} \ln y = 2 \\ \ln x = -1 \end{cases} \Leftrightarrow \begin{cases} y = e^2 \\ x = e^{-1} \end{cases} \text{ donc } \mathbf{S} = \left\{ \left(e^2; \frac{1}{e} \right) \right\}$$

Corrigé Entraînement 5

1) a)
$$4 - e^{2x-1} = 2$$

 $\Leftrightarrow e^{2x-1} = 2$
 $\Leftrightarrow 2x - 1 = \ln 2$
 $\Leftrightarrow x = \frac{\ln 2 + 1}{2} \Rightarrow S = \left\{\frac{1 + \ln 2}{2}\right\}$

b)
$$2 \ln x - 6 = -\ln x$$

 $\Leftrightarrow 3 \ln x = 6$
 $\Leftrightarrow \ln x = 2$
 $\Leftrightarrow x = e^2 \Rightarrow S = \{e^2\}$
c) $e^{-x} = \sqrt{5} \Leftrightarrow -x = \ln(\sqrt{5})$
 $\Leftrightarrow x = -\ln(5^{\frac{1}{2}})$
 $\Leftrightarrow x = -\frac{1}{2}\ln 5 \Rightarrow S = \{-\frac{1}{2}\ln 5\}$

2) a)
$$\ln(x^2) = \ln 9 \iff x^2 = 9 \iff x = -\sqrt{9} \text{ ou } x = \sqrt{9} \implies S = \{-3, 3\}$$

b)
$$e^{x^2-1} = e^{2+2x} \Leftrightarrow x^2-1 = 2+2x \Leftrightarrow x^2-2x-3 = 0$$
 avec $\Delta = 16$, $x_1 = 3$ et $x_2 = -1$ \Rightarrow $S = \{-1; 3\}$

c)
$$\ln(x) - 1 = \ln(x+2) \Leftrightarrow \ln x - \ln e = \ln(x+2) \Leftrightarrow \ln\left(\frac{x}{e}\right) = \ln(x+2) \Leftrightarrow \frac{x}{e} = x+2$$

 $\Leftrightarrow x\left(\frac{1}{e}-1\right) = 2 \Leftrightarrow x = \frac{2}{\frac{1}{e}-1} = \frac{2e}{1-e} \Rightarrow S = \left\{\frac{2e}{1-e}\right\}$

3) Un produit est nul ssi un des facteurs est nul : Soit
$$e^x - 3 = 0 \Leftrightarrow e^x = 3 \Leftrightarrow x = \ln 3$$

Soit $4 + \ln x = 0 \Leftrightarrow \ln x = -4 \Leftrightarrow x = e^{-4}$
Donc $S = \{e^{-4}; \ln 3\}$