Si. 4 - Sens de variation d'une suite

Définitions:

Soit (u_n) une suite numérique, définie pour $n \ge n_0$.

- On dit que (u_n) est **croissante** à partir du rang n_0 , si, pour tout entier $n \ge n_0$ on a : $u_{n+1} \ge u_n$ ou $u_{n+1} u_n \ge 0$
- ullet On dit que (u_n) est **décroissante** à partir du rang n_0 , si, pour tout entier $n \geq n_0$ on a $u_{n+1} \leq u_n$ ou $u_{n+1} u_n \leq 0$
- On dit que (u_n) est **stationnaire** à partir du rang n_0 , si, pour tout entier $n \ge n_0$ on a $u_{n+1} = u_n$

Remarques : • Une suite **croissante** est **minorée** par son 1 $^{\mathrm{er}}$ terme $(u_n \geq u_{n_0})$

- Une suite **décroissante** est **majorée** par son 1^{er} terme $(u_n \le u_{n_0})$
- Pour une suite à <u>termes strictement positifs</u>, on peut aussi comparer $\frac{u_{n+1}}{u_n}$ à 1:

Si
$$\frac{u_{n+1}}{u_n} \ge 1 \iff u_{n+1} \ge u_n \iff (u_n)$$
 est croissante

Si
$$\frac{u_{n+1}}{u_n} \le 1 \iff u_{n+1} \le u_n \iff (u_n)$$
 est décroissante