Savoir F.t. 1 : Généralités sur les fonctions trigonométriques

Entraînement l

- 1) On donne les fonctions $f(x) = \frac{1-2\cos x}{x}$; $g(x) = \frac{x}{2} 2\sin\left(\frac{\pi}{x}\right)$ et $h(t) = \tan\left(t \frac{\pi}{2}\right)$ Déterminer les valeurs exactes les plus simplifiées possibles de $f\left(\frac{\pi}{3}\right)$; g(4) et $h\left(\frac{\pi}{3}\right)$
- **2) a)** Soit la fonction T définie sur $[0; \pi]$ par $T(x) = (1-x)\cos x$. Déterminer son tableau de signes.
 - **b)** Déterminer le tableau de signe de la fonction m , définie sur $[-\pi;\pi]$ par $m(\theta)=\left(e^{-\theta}-1\right)\sin\theta$.

Entraînement 2

- 1) On donne les fonctions $f(x) = \frac{2\sin x + 1}{2\cos x}$; $g(x) = 2e^{-x}\cos(2x)$ et $h(t) = \sin\left(\frac{t}{2} + \frac{\pi}{3}\right)$ Déterminer les valeurs exactes les plus simplifiées possibles de $f\left(\frac{5\pi}{6}\right)$; $g(\pi)$ et $h(-\pi)$
- **2) a)** Soit la fonction Φ définie sur $\left]\frac{\pi}{2}; \frac{3\pi}{2}\right[$ par $\Phi(x) = (\pi x) \tan x$. Déterminer son tableau de signes.
 - **b)** Déterminer le signe de la fonction W , définie sur $[0;\pi]$ par $W(t)=t^2+\sin t$.

Corrigé Savoir Ft. 1

Corrigé Entraînement l

1)
$$f\left(\frac{\pi}{3}\right) = \frac{1 - 2\cos\left(\frac{\pi}{3}\right)}{\frac{\pi}{3}} = \frac{3}{\pi}\left(1 - 2 \times \frac{1}{2}\right) = 0$$
 $g(4) = \frac{4}{2} - 2\sin\left(\frac{\pi}{4}\right) = 2 - 2 \times \frac{\sqrt{2}}{2} = 2 - \sqrt{2}$

$$g(4) = \frac{4}{2} - 2\sin\left(\frac{\pi}{4}\right) = 2 - 2 \times \frac{\sqrt{2}}{2} = 2 - \sqrt{2}$$

$$h\left(\frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3} - \frac{\pi}{2}\right) = \tan\left(-\frac{\pi}{6}\right) = \frac{\sin\left(-\frac{\pi}{6}\right)}{\cos\left(-\frac{\pi}{6}\right)} = \left(-\frac{1}{2}\right) \div \frac{\sqrt{3}}{2} = \left(-\frac{1}{2}\right) \times \frac{2}{\sqrt{3}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

2) a)

x	0		1		$\frac{\pi}{2}$		π
1-x		+	0	_		+	
cos x		+		+	0	_	
T(x)		+	0	_	0	_	

b)
$$e^{-\theta} - 1 \ge 0 \iff e^{-\theta} \ge 1 \iff -\theta \ge 0 \iff \theta \le 0$$

θ	$-\pi$		0		π
$e^{-\theta} - 1$		+	0	_	
$\sin \theta$		_		+	
$m(\theta)$		_	0	_	

Corrigé Entraînement 2

1)
$$f\left(\frac{5\pi}{6}\right) = \frac{2\sin\left(\frac{5\pi}{6}\right) + 1}{2\cos\left(\frac{5\pi}{6}\right)} = \frac{2\times\frac{1}{2} + 1}{2\times\left(-\frac{\sqrt{3}}{2}\right)} = \frac{1+1}{-\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$

$$g(\pi) = 2e^{-\pi}\cos\pi = 2e^{-x\pi}$$

$$g(\pi) = 2e^{-\pi}\cos\pi = 2e^{-x\pi}$$
 et $h(-\pi) = \sin\left(\frac{-\pi}{2} + \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$

2) a)
$$\Phi(x) = (\pi - x) \frac{\sin x}{\cos x}$$

x	$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$
$\pi - x$		+	0	_	
sin x		+	0	_	
cos x	0	_		_	0
T(x)	11	_	0	_	II

b) pour $t \in [0; \pi]$ on a $\sin t \ge 0$ et un carré est toujours positif: la fonction W est la somme de deux nombres positifs : W est positive sur $[0; \pi]$